Classic image processing quickly reaches its limits, especially in the area of ​​surface inspection. With the help of the Neuralzye® software from senswork, an AI inspection of transparent strip material has now been implemented, with which the detection of bubbles and inclusions can be detected.

In an automatic circuit board assembly process, a wide variety of circuit board connectors are automatically pressed with the circuit board. In order to ensure that the circuit board connector can be plugged in in advance, our camera system checks the pin geometries of the plug in advance and uses the pin positions to determine whether it can be plugged into the circuit board image.

For the high-volume production of touch displays, current trends are clearly pointing in the direction of hybrid bonding. This combines the advantages of solid and liquid bonding to permanently connect glass and display. To ensure that the alignment of the individual components is precise, senswork offers high-precision camera systems for determining the correct position and rotation.

Applications in the semiconductor industry require both high-precision, leading-edge technologies and reliable performance characteristics in cleanroom and control test environments. One of the largest manufacturers of semiconductor device handling systems relies on a specially developed VisionUnit from senswork to ensure chip positioning for very small chip sizes with extremely small dimensions.

This project is the first time senswork has implemented the new test equipment concept for highly integrated manual test stations. A high-resolution camera system measures pin positions of an MTD connector assembly, records connector coding and verifies housing dimensions within a tolerance range of 0.1 mm. A color dot spray system marks well-tested components.

Fakra connectors are used in automotive electronics for the transmission of signal data such as GSM, GPS or camera data. In order to meet the high quality requirements even in the fully automated production of high volumes, a leading supplier of these products relies on senswork‘s inspection technologies.

Membrane tubes are the core component of an innovative filter technology for wastewater treatment plants. To ensure that these tubes are flawless and that the cleaning performance of the plants runs optimally, a line scan camera system from senswork inspects the surfaces of the membrane tubes for a wide variety of production defects.

Today, die-pressed carbons and graphites are used in large quantities to manufacture a wide variety of subcomponents for the automotive industry, such as fuel and water pumps. To ensure that the products leave the production line free of defects, senswork has developed a fully automated system for the quality assurance of such components together with a mechanical engineering company from Rosenheim.

The testing device, which is 100% manufactured by senswork, enables the measurement of Fakra plug assemblies with an accuracy range of ± 0.02 mm. Both the Fakra interface side and the PCB side with press fits are tested with this device. An automatic focusing device ensures that the pins relate to the reference feature with constant image quality. The system is calibrated by a checkerboard calibration with high-precision calibration targets.

For the automatic joining process of display assemblies with a so-called metal carrier, a total of 6 camera units from senswork support the robot in aligning the components with one another. This is made possible by a unique prism module, which guarantees a precise view in two directions for each camera. This makes it possible to compare the reference point of a display with that of the metal carrier in a camera image.

Our semi-automatic test system measures different Fakra connector assemblies for correct coding, wobble circuit as well as pluggability of the PCB side. To check the pluggability, we use our virtual plug gauge, which recognizes the pluggability in a virtual board image based on the given pin positions.

In order to check the quality of screw caps on filled soup glasses after filling, senswork now offers a 360 ° camera inspection system, which allows a view of the surface of the cap in a picture through a specially developed mirror deflection. With up to 6 glasses per second, the quality of the lid surface is ensured and checked for damage and freedom from scratches.

There are many dimensional data on saw blades that ultimately determine the cutting quality and service life. For the inspection of diamond saw blades, senswork, together with the company Plattner, has equipped a measuring station with a double-head laser scanner system, which measures and records all tooth geometries, blade width, cutting width, angularity, and diameter during the run.

In this application, plastic injection molded parts fed by a vibratory conveyor are transferred to a rotating glass plate, where they are inspected by two camera systems. The first of the two systems checks all parts for type accuracy, while system 2 subsequently detects the smallest burrs on the diameter.

With 18 images in different positions and focal planes on the component, our camera system checks a connector assembly on the front and back. With a resolution of 8 µm / pixel and the specially developed stitching tool, the images are joined together and combined into one overall image.

With the manual mounting of assembly groups in particular, it often happens that individual components are missing or the precision of the assembly does not meet the specifications. An end-of-line test system from senswork checks the correct assembly and alignment of individual components.

In high-frequency technology, the quality of the installed coaxial cables, especially in the connection area of the cables, plays a major role in the subsequent signal quality. The measuring system developed by senswork records the inner conductor tip three-dimensionally, and is thus able to precisely measure the spatial deflection of the tip as well as the protrusion from the outer conductor shield.

Numerous errors can occur in the manufacture of soaps, and while the human eye can recognize that immediately, the way they look can vary widely. A multi-camera system consisting of incident light, transmitted light and 3D inspection reliably detects all defect features.

In a fully automated handling system with a 6-axis robot, a 3D laser scanner captures components in flight. The robot presents three components per second to the scanner. This records the component geometry in 3D and measures a recess on the component at several positions.

After the painting process of synthetic parts, they are subjected to a fully automatic surface inspection by a shape-from-shading system before further processing. This method allows the smallest surface defects such as paint pimples, scratches, inclusions, lint or other raised or recessed defects to be reliably detected. For this, our system uses eight lighting directions with eight partial images, which are offset by Shape from Shading to form a height map of the surface.

In this system, Euro pallets are fed via a roller conveyor belt to a robot system, which automatically removes the sack layers and places them on a longitudinal conveyor belt. Using a time of flight camera from senswork, the positions of the plastic bags are recognized fully automatically and transferred to the robot coordinate system. The detection accuracy of the system is ± 10 mm, and thus allows precise pick-up by the suction gripper mounted on the robot.

The cables are 10 km long and tow large ships across the ocean to discover new oil deposits. A defective cable can cause millions in damage if it causes a ship to abandon its business. senswork image processing takes care of this. Even during production, a line camera is swiveled radially around the seam, creating a development of the weld seam. In the camera image generated in this way, the smallest defects in the weld seam are visualized and recognized in good time.

100 percent inline testing of seven-segment modules in production. After the injection molding process, the test parts are checked for the smallest inclusions and inhomogeneities in a double nest in transmitted and reflected light. The senswork inspection tool compensates for nest and shape variances fully automatically and thus ensures an extremely reliable inspection.

A 360 ° panorama endoscope is used to examine the inside of an aluminum body for processing marks and surface defects such as cavities and pores. Our system checks cylindrical internal surfaces in several height sections using deep learning tools for irregularities in the surface.